The generalized von Neumann-Jordan type constant and fixed points for multivalued nonexpansive mappings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized weakly contractive multivalued mappings and common fixed points

In this paper we introduce the concept of generalized weakly contractiveness for a pair of multivalued mappings in a metric space. We then prove the existence of a common fixed point for such mappings in a complete metric space. Our result generalizes the corresponding results for single valued mappings proved by Zhang and Song [14], as well as those proved by D. Doric [4].

متن کامل

Convergence of approximating fixed points sets for multivalued nonexpansive mappings

Let K be a closed convex subset of a Hilbert space H and T : K ⊸ K a nonexpansive multivalued map with a unique fixed point z such that {z} = T (z). It is shown that we can construct a sequence of approximating fixed points sets converging in the sense of Mosco to z.

متن کامل

Some Sufficient Conditions for Fixed Points of Multivalued Nonexpansive Mappings

We show some sufficient conditions on a Banach space X concerning the generalized James constant, the generalized Jordan-von Neumann constant, the generalized Zbagănu constant, the coefficient ε̃0 X , the weakly convergent sequence coefficientWCS X , and the coefficient of weak orthogonality, which imply the existence of fixed points for multivalued nonexpansive mappings. These fixed point theor...

متن کامل

Common Fixed Points for Nonexpansive and Nonexpansive Type Fuzzy Mappings

In this paper we define g-nonexpansive and g-nonexpansive type fuzzy mappings and prove common fixed point theorems for sequences of fuzzy mappings satisfying certain conditions on a Banach space. Thus we obtain fixed point theorems for nonexpansive type multi-valued mappings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScienceAsia

سال: 2019

ISSN: 1513-1874

DOI: 10.2306/scienceasia1513-1874.2019.45.292